חAmIBIA UחIVERSITY
OF SCIEПCE AחD TECHחOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: BACHELOR OF ECONOMICS	
QUALIFICATION CODE: O7BECO	LEVEL: 5
COURSE CODE: MFE511S	COURSE NAME: MATHEMATICS FOR ECONOMISTS 1A
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	MR G. S. MBOKOMA, MR F.N. NDINODIVA, MRS A. SAKARIA
MODERATOR:	MR I.D.O NDADI

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations.
3. All written work must be done in blue or black ink and sketches must be done in pencil.
4. Decimal answers must be rounded to 4 decimals places

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1 (25 marks)

1.1 Simplify the following expressions.
1.1.1 $\left(\frac{a+b}{2 a-2 b}-\frac{a-b}{2 a+2 b}-\frac{2 b^{2}}{b^{2}-a^{2}}\right)\left(\frac{1}{b}-\frac{1}{a}\right)$
1.1.2 $\frac{3^{n+1}+9}{3^{n-1}+1}$
1.1.3 $\log _{3} 81^{-1}+\log _{6} 36-\log _{2} \sqrt{4^{2}}$
1.2 Solve each of the following equations without using a calculator:
1.2.1 $\log _{2} x-\log _{8} x=4$
1.2.2 $\left[\left(\frac{1}{20}\right)^{2+x} \times\left(\frac{1}{20}\right)^{8 x}\right]^{2}=1$

QUESTION 2 (25 marks)

2.1 Rite-Cut riding lawnmowers obey the demand equation $p=-\frac{1}{20} x+1070$. The cost of producing x lawnmowers is given by the function $C(x)=110 x+6000$.
2.1.1 Express the revenue function, R as a function of x.
2.1.2 Express the profit, P as a function of x.
2.1.3 Use a vertex approach to find the value of x that maximizes profit, hence find the maximum profit?
2.1. 4 What prices should be charged to maximise profit?
2.2 The Income Determination model for a 3-sector economy is given as

$$
Y=C+I+G ; C=C_{0}+b Y, \quad I=I_{0}, \quad G=120
$$

> Where $Y=$ Income, $C=$ Consumption, $I=$ Investment and G $=$ Government expenditure

With the above information determine showing all necessary steps
2.2.1 the reduced form of \boldsymbol{Y}
[5]
2.2.2 the numerical value of income, \boldsymbol{Y} given that:

$$
\begin{equation*}
C_{0}=220, b=0.55, I_{0}=110 \tag{3}
\end{equation*}
$$

For this same economy, the LM (money market) model is given by

$$
M_{s}=500 ; M_{d}=L_{1}+L_{2}, L_{1}=0.2 Y+200 \text { and } L_{2}=150-200 i
$$

2.2.3 With this additional information determine the interest rate \boldsymbol{i} for this economy
2.2.4 Calculate the autonomous expenditure multiplier for this economy

QUESTION 3 (25 marks)

3.1 The demand function for a certain commodity is $p(x)=10-0.001 x$, where p is measured in $N \$$ and x is the number of units. The total cost of producing x items is $C(x)=50+5 x$.
By using a derivative approach, determine the level of production that maximises the profit?
3.2 A firm's production function is $Q(L, K)=L^{\beta} K^{\alpha}$, so that the $M P_{L}=\beta L^{\beta-1} K^{\alpha}$ and $M P_{K}=\alpha L^{\beta} K^{\alpha-1}$. Let $\alpha=\frac{2}{3}$ and $\beta=\frac{1}{3}$. Let the slope of the isocost line be $-\frac{w}{r}$, and let $w=N \$ 4$ and $r=N \$ 27$.
3.2.1 Find the marginal rate of technical substitution (MRTS).
3.2.2 What is the lowest cost at which it can produce 1080 units?
3.3 Use implicit differentiation to determine $\frac{d y}{d x}$ for the implicit function
$3 x^{3}+5 x y^{2}-4 y^{3}=8 x^{2}$ and determine the slope of this curve at $(1,1)$.

QUESTION 4 (25 marks)

4.1 Determine the following integrals:
4.1.1 $\int\left(\frac{5}{x}-2 \sqrt[3]{x^{2}}\right) d x$
4.1.2 $\int_{0}^{5} e^{-2 t} d t$
4.2 An investment flow is $I(t)=900 \sqrt{t}$, where t is measured in years.
4.2.1 Calculate the total capital formation during the first four years?
4.2.2 Calculate the total capital formation from the end of the second year to the beginning of the beginning of the sixth year.
4.2.3 Find an expression for the total capital formation during the first N years and hence find the year in which the total capital formation reaches N\$16200.

